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ABSTRACT

This thesis builds upon work previously done in the development of the

Computer Aided Prototyping System (CAPS) and the Prototype System

Description Language (PSDL) and presents a conceptual design for the pioneer

prototype of the static scheduler for multiprocessors which are part of the CAPS

execution support system. The design of hard real-time systems is gaining

importance in the software engineering field as real-world processes are

becoming automated. This increase in automation needs the advancement of

software design technology to meet the design requirements for these hard real-

time systems. The CAPS and PSDL are tools being developed to aid the software

designer in the rapid prototyping of hard real-time systems. Scheduling PSDL

operators in multiprocessor systems to meet the timing constraints is the main

part of this thesis. Implementation of the conceptual design will be the basis for

further work in this area.
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I. INTRODUCTION

A. BACKGROUND

Real-time systems are widely applied in many fields. There are

two types of real-time systems, namely, soft real-time systems and

hard real-time systems. In soft real-time systems, tasks have

performance goals, but they are not constrained to finish by specific

times. On the other hand, hard real-time systems are defined as

those systems in which the correctness of the system depends not

only on the logical result of computation, but also on the time at

which the results are produced. Examples of this type of real-time

system are command and control systems, process control systems,

flight control systems, space shuttle avionics, systems such as the

space station, space-based defense systems such as SDI, and large

command and control systems [Ref. 39: P. 1].

Most of the hard real-time computer systems are special-purpose

and complex, require a high degree of fault tolerance, and are

typically embedded in a larger system [Ref. 39: P. 1. Simply stated,

an embedded computer is one that is part of a larger system, such as

a guidance computer on a missile, a process controller, a business

communications network, or even a microprocessor used to control

an automobile engine or a microwave oven. An embedded computer

system may be anything from a single microcomputer to a network

of large computers. In general, embedded systems are large and
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have similar requirements for parallel processing, real-time control,

and high reliability [Ref. 3: P. 3].

Typically, a real-time system consists of a controlling system and

a controlled system. The controlled system can be viewed as the

environment with which the computer interacts. Adaptability is

particularly important for real-time systems because if a task's

deadlines can be met only under a restricted system

state/configuration, reliability and performance may be

compromised.

In summary, real-time systems differ from traditional systems in

that deadlines or other explicit timing constraints are attached to

tasks, the systems are in a position to make compromises, and faults,

including timing faults, may cause catastrophic consequences. This

implies that, unlike many systems where there is a separation

between correctness and performance, in real-time systems

correctness and performance are very tightly interrelated. Thus,

real-time systems solve the problem of missing deadlines in ways

specific to the requirements of the target application.

B. SOFTWARE ENGINEERING AND RAPID PROTOTYPING

1. Software Engineering

Software Engineering is the application of science and

mathematics to the problem of making computers useful to people

by means of software. Software is the entire set of documentation,

operating procedures test case, and programs associated with a

computer-bases system [Ref. 2]. It is not just programming. An



abstraction is a simplified view of a system containing only the

details important for a particular purpose. Just as experience can

help us solve the similar things in our lives, abstractions provide the

templates for large scale projects.

Requirements

Analysis

Functional 
/" Specification

A - Architectural
.I L Design

Figure 1 Traditional Software Life Cycle
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2. Traditional Software Cycle

Figure 1 on page 3 illustrates the traditional life cycle

paradigm for software engineering. Sometimes it is called the
"waterfall model" [Ref. 36: P. 20]. Requirements analysis is the

process of determining and documenting the customer's needs and

constraints. Functional specification is the process of proposing and

formalizing a systems interface for meeting the customer's needs.

Architectural design is the process of decomposing the system into

modules and defining internal interfaces. Implementation is the

process of producing an executable program unit for each module,

which can be divided into two parts. Coding translates the module

into a machine-executable form, and testing assures that defined

input produces actual results. Evolution is the process of adapting the

system to the changing needs of the customer. Figure 2 on page 5

illustrates the cost distribution of software development [Ref. 2].

Figure 3 on page 6 contains three generic phases of software

engineering. The definition phase focuses on what. The development

phase focuses on how. The maintenance phase focuses on change that

is associated with error correction, adaptations required as the

software's environment evolves, and modifications due to

enhancements brought about by changing customer requirements.

[Ref. 36: PP. 27-28]

3. Rapid Prototyping

A prototype is an executable model or a pilot version of

the intended system [Ref. 23: P. 1409]. A prototype is usually

4



a partial representation of the intended system, used as an aid in

analysis and design rather than as production software. The purpose

of a prototype is to provide answers to questions about the

requirements and the properties of the proposed system. A

prototype does not have to be complete, reliable, or efficient.

However, a prototype must have the following properties

(1) be traceable to its requirements,

(2) be easy to modify, and

(3) be easy to read and analyze.

Cost

25% 75%

Develop Evolve

I I I I
25% 25% 30% 20%

Requirements Specification Design Implementation

35% 65%
Coding Testing

Figure 2 Cost Distribution of Software

Rapid prototyping is the construction activity leading to the

prototype. The goal of rapid prototyping is to develop an executable
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model of the intend system early in the development process. It is

the process of quickly building and evaluating a series of prototypes.

Definition

~Development

M~aintenance

Figure 3 A Generized View of Life Cycle

Figure 4 on page 7 illustrates the iterating prototyping cycle

[Ref. 27: P. 14]. The user and the designer work together to define

the requirements and specifications. After requirements come out,

the designer constructs a model or prototype of the proposed system

in a prototype description language at the specification level. The

resulting prototype is a partial representation of the system,

including only those attributes necessary for meeting the

requirements. It serves as an aid in analysis and design rather than
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as production software. The principle of information hiding is

particularly important in this context to provide flexibility.

I nitial

goals

.,Determine ]Requirements Design

vrequirements prototype

SProblems sse

Ue Prototype

[Ye s

Validated requirements

Construct Modularization + Objects
production
system

New ISystem

goals Production

use

Fugure 4 The Prototyping Cycle
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The resulting prototype is validated by the user. If the

prototype fails to execute properly as user expected, the user

identifies problems and works with the designer to redefine the

requirements. This is an interactive process. It continues until the

user determines the critical aspects of the envisioned system.

The designer uses the validated requirements as well as

hidden components which are created in the design of prototype to

construct production system. If goals have been changed during the

use of production, these new goals will trigger further iterations of

the prototyping cycle.

C. CAPS AND PSDL OVERVIEW

1. CAPS

Rapid prototyping of embedded systems can be accomplished

by using the Computer Aided Prototyping System (CAPS) and its

associated language, Prototype System Description Language (PSDL)

[Ref. 27]. The Computer Aided Prototyping System (CAPS) process is

one proposed method for speeding up the design and implementation

of large software systems while increasing the reliability of the final

product and, at the same time, reducing the need for expensive

design changes during the latter stages of software development [Ref.

33: P. 1]. This process utilizes the approach of rapid prototyping

combined with a reusable software management base to produce a

prototype of the system being designed. PSDL is a high level

prototyping language. It supports a modeling strategy based on data

S



flow graphs augmented with non-procedural timing and control

constraints [Ref. 23].

Development of an executable prototype with CAPS requires

a modular design which supports retrieving appropriate reusable

software modules. Figure 5 on page 12 illustrates the major steps

that the designer uses to interact with the CAPS to develop a

prototype [Ref. 19: P. 12].

The designer begins the process by entering the

specifications of the intended software component. The rewrite

subsystem maps the specifications into an abstract form to search

for components in the software base. If the component is found and

is unique, then it is retrieved. If more than one component is found,

the designer has to choose the best one from them. If the component

is not found, the specification can not be met by an existing

component. In such a case, the designer has to decompose the

specifications by using the system's prototyping language.

If the specification is not decomposable, the designer should

code this basic specification in a programming language. When the

specification is decomposed, new specifications are created. Since we

cannot know if there are suitable components before we decompose

the parent specification, these new sub-specifications can be

processed in an iterative way. When a specification is decomposed

into a network of simpler components, the required interconnections

are recorded in the design database with a dataflow diagram, which

9



is part of the syntax of the prototyping language and serves as

design documentation.

After the designer decomposes the specification, the entire

process is applied to those specifications. The CAPS reduces the

designer's efforts by automating time-consuming tasks in

conventional prototyping, such as turning specifications into

prototypes, modifying prototypes, and searching for available

reusable components [Ref. 251.

The main subsystems of CAPS are the user interface, the

software database system, and the execution support system. The

user interface provides facilities for entering information about the

requirements and design, presenting the results of prototype

execution to the customer, guiding the choice of which aspects of the

prototype to demonstrate, and helping the designer propagate the

effects of a change. The user interface consists of a syntax-directed

editor with graphics capabilities, and expert system for

communicating with end user, a browser, and a debugger.

The software database consists of a design database, a

software base, a software design-management system, and a rewrite

subsystem. The design database contains the PSDL prototype

descriptions for each software development project using CAPS. The

software base contains PSDL descriptions and code for all available

reusable software components. The software design-management

system manages and retrieves the versions, refinements, and

alternatives of the prototypes in the design database and the

I0



reusable components in the software base. The rewrite subsystem

translates PSDL specifications into a normalized form used by the

design-management system to retrieve reusable components from

the software base [Ref. 26].

The purpose of execution support system is to turn the PSDL

description of the system under construction into an executable

prototype using the software components that have been retrieved

from the software base or written for the prototype [Ref. 33: P. 13].

The execution support system helps speed up design as well as

design changes by providing a localized view of the processes in the

prototype, analyzing the prototype's timing properties, and providing

the ability to quickly demonstrate the consequences of design

decisions through prototype execution. The execution support system

contains a translator, a static scheduler, and a dynamic scheduler.

During this process, validation of the critical timing information

provided by the designer is done, control constraints are translated

into the base language of the system, and the base language modules

are organized for final execution. Figure 6 on page 15 illustrates the

architecture of the execution support system.

2. PSDL

A good language for expressing design thoughts in terms of a

precise model is important for rapid prototyping [Ref. 25: P. 68]. In

order to produce a reasonable prototype, PSDL should meet the

following subgoals:
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Figure 5 Prototype Development Using the CAPS
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1. PSDL should be simple and easy to use.

2. PSDL should support good modularity.

3. PSDL should support retrieval of reusable modules.

4. PSDL should support adaptability for modification.

5. PSDL should support abstraction to the software system.

6. PSDL should support requirements tracing.

7. PSDL should support a hierarchically structured

prototype.

8. PSDL should create an executable prototype.

9. PSDL should provide graphical notation.

10. PSDL should be well suited for use with Ada.

11. PSDL should be based on a simple computational model.

PSDL serves as an executable prototyping language at a

specification or design level. It was designed as the primary

connection between the designer and the components of CAPS. PSDL

supports operator, data, and control abstractions, and encourages

hierarchical decompositions based on both data flow and control

flow.

a. PSDL Computational Model

The computational model is an augmented graph

G ( V, E, TC(v,), C(v) )

where V is the set of vertices, E is the set of edges, TC(v)

is the maximum execution time for each vertex v, and C(v) is the set

13



of control constraints for each vertex v. Each vertex is an operator

and each edge is a data stream.

(1) Operators. PSDL operators represent either

functions or state machines. Simply stated, a function is a immutable

module which is influenced only by the most recent stimulus and

does not exhibit internal memory; while a state machine is a mutable

module with an internal state. A module is mutable if the response of

the module to at least one message can be affected by previous

messages it has received, and is immutable otherwise.

When an operator fires, it reads one data from each input

stream and writes, at most, one computed data value onto each

output stream. There is a precedence relationship between each

operator described as follows :

if the output from operator A is the input to operator B,

then operator A must fire before operator B.

(2) Data Streams. PSDL data streams are

communication links between two PSDL operators, the producer

(output) and the consumer (input). Each data stream is an arrow in

the PSDL computational model. The precedence relationship between

the data values in each data stream is described as follows

if data value a is generated before data value b,

then a must be delivered to the next operator before b.

14



Execution Support System

Software Base

PSDL

Static Scheduler
Translator Execution Support

System

SDebugger

Static Scheduler

Non_Criticals
Dynamic Scheduler

SB.a TL.a NC.a SS.a

Ada Compiler/Linker

Executable

r Prototype
Prototype Execution

Figure 6 Execution Support System

These data streams are designed as either data flow or

sampled streams. In data flow, data values arc guaranteed to be not

lost or repeated by utilizing a first-in first-out queue. Strict
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lost or repeated by utilizing a first-in first-out queue. Strict

sequencing relationships should be enforced between the producer

and consumer of a data flow stream to insure that the queue does

not overflow or underflow.

A sampled stream guarantees that data values can be entered

into or delivered from a data stream as they are required by the

operators. A sampled stream does not require or provide protection

against lost or repeated values since only the most recent value is of

interest. Therefore it does not require a strict sequencing

relationship between the operators. Figure 7 on page 16 illustrates

the graphic model of PSDL.

A, B, C : operators
a, b : data streams

Figure 7 Graphic Model of PSDL

(3) Timing and Control Constraints. The timing and

control constraints for operator firing and execution are critical in

hard real-time systems. Within the computational model, each time

critical operator includes a maximum execution time which gives the

worst case time to complete execution once the operator fires. Critical

operators can also include conditional control constraints that act as

16



guards. These guards stipulate firing conditions for an operator,

conditions necessary before computed values are output onto data

streams, or exception situations.

b. PSDL Abstractions.

Three types of abstractions represent the major building

blocks for constructing the PSDL prototype. They are operator

abstractions, data type abstractions, and control abstraction.

(1) Operator Abstractions. An operator abstraction is

either a functional abstraction or a state machine abstraction. PSDL

operators have two major parts: the specification and the

implementation. The specification part contains attributes describing

the form of the interface, the timing characteristics, and both formal

and informal descriptions of the observable behavior of the operator.

A PSDL operator corresponds to a state machine abstraction if its

specification part contains a STATES declaration, and otherwise it

corresponds to a functional abstraction.

The implementation part determines whether the

operator is atomic or composite. Atomic operators have a keyword

specifying the underlying programming language (Ada in our

application) and the name of the retrieved reusable module that

implements this operator. Composite operators have attributes which

include communication graph, internal data, control constraints, and

informal description.

(2) Data type Abstractions. Data abstractions

decouple the behavior of a data type from its representation. This is

17



especially important in prototyping because the behavior of the

intended system is only partially realized, capturing only those

aspects important for the purposes of the prototype [Ref. 23: P.

1413]. The PSDL prototype language enforces explicit interactions

between modules by requiring that both pre-defined and user-

defined data types be immutable [Ref. 19: p. 16].

(3) Control Abstractions. The control abstractions of

PSDL are represented as enhanced data flow diagrams augmented by

a set of control constraints. Order of execution is only partially

specified, and is determined from the data flow relations given in the

enhanced data flow diagrams, based on the rule that an operator

consuming a data value must not start until after the operator

producing the data value has completed.

D. ANALYSIS OF ALGORITHMS

1. Introduction

The purpose of algorithm analysis is to predict the behavior,

especially the running time, of an algorithm without implementing it

on a specific computer [Ref. 32: P. 37]. Consider the following Ada-

like instructions:

for i in I .. n loop

for j in 1 .. n loop

dosomething;

end loop;

end loop;

is



It is obvious that the instruction dosomething is executed n times;

while it is executed 2*n times when in the following codes:

for i in 1 .. n loop

dosomething;

end loop;

for j in 1 .. n loop

dosomething;

end loop;

These frequencies n and n 2 are different increasing orders

of magnitude. The order of magnitude of a statement refers to its

frequency of execution. The order of magnitude of an algorithm

refers to the sum of the frequencies of all of its statements. Given

two algorithms for solving the same problem whose orders of

magnitude are n and n 2 , we will prefer the first. For example, if n

= 10 then these algorithm will require 10 and 100 units of time to

execute respectively.

It is usually hard to predict the exact behavior of an

algorithm. There are too many influencing factors. Instead, we will

extract the main characteristics of the algorithm. We ignore constant

factors and concentrate on the behavior of the algorithm as the size

of the input goes to infinity [Ref. 32: PP. 37-38]. For example, if the

number of steps is 2n 2 + 50, then we ignore the constants 2 and 50

and say that the running time is approximately n 2 . The analysis is

thus only an approximation.

19



2. Complexity and 0-, -Notation

When we discuss the most "efficient" algorithm for solving a

problem, the notion of efficiency involves all the various computing

resources needed for executing an algorithm. However, by the "most

efficient" we normally mean the fastest. Since time requirements are

often a dominant factor determining whether or not a particular

algorithm is efficient enough to be useful in practice, we shall

concentrate on this single resource. The time complexity function for

an algorithm expresses its time requirements by giving, for each

possible input length, the largest amount of time needed by the

algorithm to solve a problem instance of that size [Ref. 14: P. 5].

There are several kinds of mathematical notation which are

very useful for the analysis of algorithm. We use two kinds of

notation: 0-notation and Q2-notation [Ref. 17: PP. 27-31].

Definition: f(n) = O(g(n)) iff there exist two positive constants

c and no such that If(n) <= clg(n) for all n >= no; f(n) = Q (g(n)) iff

there exist positive constants c and no such that for all n > no, if(n) >=

clg(n)1.

If an algorithm has computing time 0(g(n)), we mean that if

the algorithm is run on some computer on the same type of data but

for increasing values of n, the resulting times will always be less

than some constant times Ig(n)I. When determining the order of

magnitude of f(n) we shall try to obtain the smallest g(n) such that

f(n) = 0(g(n)).
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0-notation is used to express an upper bound for the

execution time of an algorithm while K2-notation is to determine a

lower bound.

A polynomial time algorithm is defined to be one whose time

complexity function is 0(p(n)) for some polynomial function p, where

n is used to denote the input length. Examples of algorithms whose

time complexity function cannot be so bounded are exponential time

algorithms. Table 1 on page 22 illustrates the comparison of several

polynomial and exponential time complexity functions [Ref. 14: P. 7].

The distinction between polynomial time algorithms and exponential

time algorithm admits of many exceptions when the problem

instances of interest have limited size. Even in Table 1, the

2 n algorithm is faster than n 5 algorithm for n <= 20.

When the size n is small, the difference between polynomial

or exponential time algorithms does not matter. However, as n gets

large, there are large differences between them. This table indicates

some of the reasons why polynomial time algorithms are generally

regarded as being much more desirable than exponential time

algorithms.

E. NP PROBLEMS

1. Introduction

There is wide agreement that a problem has not been "well-

solved" until a polynomial time algorithm is known for it. A problem

is said to be intractable if it is so hard that no polynomial time

algorithm can possibly solve it [Ref. 14: P. 81.
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Size n

Time
Complexity 10 20 30 40 50 60
function

.00001 .00002 .00003 .00004 .00005 .00006
n second second second second second second

2 .0001 .0004 .0009 .0016 .0025 .0036
n second second second second second second

3 .001 .008 .027 .064 .125 .216
n second second second second second second

5 .1 3.2 24.3 1.7 5.2 13.0
n second seconds seconds minutes minutes minutes

n .001 1.0 17.9 12.7 35.7 366
2 second second minutes days years centuries

8 13
n .059 58 6.5 3855 2*10 1.3*10

3 second minutes years centuriescenturies centuries

Table 1 Comparison of several polynomial and exponential
time complexity functions

There are many problems for which no polynomial-time

algorithm is known. Some of these problems may be solved by

efficient algorithms that are yet to be discovered. However, it is very

possible that there exist many problems which can not be solved

efficiently.

2. Deterministic Turing Machines and the Class P

In order to formalize the notion of an algorithm, we need to

fix a particular computational model. There are many computational

models; however, the Turing machine model is most widely used.



The Turing machine consists of a control mechanism that can

be in one of a finite number of states at any given time. One of these

states is called the initial state and represents the state in which the

machlie starts a computation. Another state is the machine's halt

state. Whenever the halt state is reached, the Turing machine stops.

A Turing machine can both read from and write on its input medium.

It is equipped with a tape head that can be used both to read and

write symbols on the machine's tape.

If M is a Turing machine, we say that M accepts the language

L in polynomial-time if the machine M accepts all input strings in L,

rejects all input strings not in L, and there is a polynomial p(n) such

that the number of steps required to accept any w e L(M) is no

greater than p(Iwl). We define P to be the class of languages that can

be accepted by Turing machine in polynomial-time [Ref. 4: P. 260]. In

our application, we regard the problem as an input language L for

the test of Turing machine. We will use the words "language" and

"problem" alternately.

3. Nondeterministic Computation and the Class NP

A nondeterministic Turing machine is similar to a traditional

Turing machine. The distinction is that a nondeterministic machine

may provide more than one applicable transition for some current

state/symbol pair. If a nondeterministic Turing machine should

arrive at a current state/symbol pair from which more than one

transition is applicable, the machine makes a nondeterministic choice
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and proceeds with the computation by executing one of the

applicable options.

We say that a nondeterministic Turing machine M accepts

the language L in polynomial-time provided L = L(M) and there is a

polynomial p(x) such that for any w e L, M can accept w by a

computation involving no more than p(Iwl) steps. Furthermore, we

define NP to be the class of languages that can be accepted by

nondeterministic Turing machines in polynomial-time [Ref. 4: P. 270].

4. The Relationship Between P and NP

Since every deterministic Turing machine is contained in the

class of nondeterministic Turing machines, we can immediately claim

that P Q NP. But the question of whether P = NP is not yet resolved.

There are many decision problems throughout computer science that

can be restated in terms of recognizing languages that are known to

be in NP but whose membership, or lack of membership, in P is not

yet determined. A decision problem is a problem that can be stated

in the form of a question whose answer is either yes or no. Thus, if P

= NP, these problems would appear to have practical algorithmic

solutions, but if p # NP, the chances of finding efficient algorithm to

these problems would be significantly reduced [Ref. 4: PP. 270-271].

There are many problems belong to NP but no polynomial

time solution algorithms have been found despite the efforts of many

knowledgeable and persistent researchers. There is a widespread

belief that P * NP. Figure 8 on page 25 shows the world of NP
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problem [Ref. 14: p. 34]. We expect that the shaded region denoting

NP-P is not totally uninhabited.

:::::::::: ::: :: ::::::::::::::: .............................................::::::::: :::::::

Figure 8 The World of NP

5. Polynomial Transformations and NP-Completeness

If P differs from NP, then all problems in P can be solved

with polynomial-time algorithms while all problems in NP-P are

intractable. Thus, given a decision problem He NP and Figure 8, we

would like to know which of these two possibilities holds for I-1.

Unless we can prove that P NP, there is no possibility to

show that any problem belongs to NP-P. The theory of NP-

completeness does not provide a method to prove that P NP. Nor

does it provide a method of obtainingo polynomial time algorithms for

the problems belong to NP. Instead, theory shows that "if P * NP,

then HIe NP-P." If a problem is NP-complete, it will have the

......5 ...



property that it can be solved in polynomial time iff all other NP-

complete problems can also be solved in polynomial time.

Let Li L2 be problems, Li transforms to L2 (written as Li

L2) if and only if there is a way to solve Li by a deterministic

polynomial-time algorithm using a deterministic algorithm that

solves L2 in polynomial time. There are two lemmas for the

transformation [Ref. 14: PP. 34-37].

Lemma 1: If Li * L2, then L2 E P implies Li 6 P.

Lemma 2: If Li -c L2 and L2 -c L3, then Li -c L3.

Formally, a language is defined to be NP-complete if L E NP

and, for other languages L' E NP, L' -, L. Lemma 1 leads us to our

identification of the NP-complete problems as "the hardest problems

in NP." Lemma 2 tell us that if any NP-complete problem can be

solved in polynomial time, then all problems in NP can be so solved.

On the other hand, if any problem in NP is intractable, then so are all

NP-complete problems. Figure 9 on page 27 illustrates the scope of

NP-complete problems [Ref. 14: P. 37].

6. Dealing with NP-Complete Problems

Many scheduling problems have been shown to be NP-

complete. Table 2 on page 28 illustrates the survey [Ref. 6: P. 20].

The scheduling problems stated in Table 2 assume that there are to

timing constraints for tasks. The algorithms solving problem 1 and

problem 2 are optimal if their time complexities are not greater than

their corresponding problem complexities.
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P

Figure 9 The World of NP, Revisited

The optimal solutions for the NP-complete problems refer to

least time to schedule all tasks and/or least processors to schedule

them. If we can prove that every step in algorithm guarantees these

properties, we say this algorithm optimal.

The notion of NP-completeness is a basis that allows us to

identify problems for which no polynomial algorithm is likely to

exist. But we still need to solve such problems. In doing so, we have

to sacrifice something to comprise. The most compromises concern

the optimality, robustness, guaranteed efficiency, or completeness of

the solution [Ref. 32: P. 3571.

The best known algorithms for NP-complete problems have a

worst case complexity that is exponential in the number of inputs.

We can try to solve NP-complete problems in polynomial time on the

average. However, finding the right distribution is usually very

2)7



difficult. Another possibility is algorithms whose running times are

exponential, but they work reasonably well for small input, which

may be sufficient.

Problem Number of Task Precedence
Number processors processing constraints Complexity

m time tj

1 Arbitrary Equal Forest O(n)
2

2 2 Equal Arbitrary O(n )

3 Arbitrary Equal Arbitrary NP-complete

Fixed t = I or2
m>=2 for all i Arbitrary NP-complete

5 Arbitrary Arbitrary Arbitrary NP-complete

Table 2 Complexity of Nonpreemptive Scheduling Problems

A feasible solution with value close to the value of an optimal

solution is called an approximate solution. An approximate solution

may not lead to the precise result. However, there are many

problems that have no exact solution, we have to use approximate

methods to solve them. We need a heuristic to get approximations to

the optimal solution.

In PSDL, a feasible solution is a sequence of tasks which meet

not only precedence but also timing constraints. If one or more tasks

in the sequence violate these two constraints, this sequence cannot
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be feasible. If we cannot find any feasible solution in a scheduling

system, we have to find an optimal solution.

An optimal solution in PSDL is one of the sequences which

have no feasible solutions. In addition, this solution is the best

sequence among them. The word "best" may refer to least tardiness

time for the sequence or least number of processors needed to

executed the schedule.

F. OBJECTIVES

This thesis describes the design for the static scheduler system

(see Figure 6 on page 15). The objective of this thesis is to present

the algorithms which successfully schedule the tasks in

multiprocessor systems with consideration of the precedence

constraints on such tasks.

G. ORGANIZATION

Chapter II provides a survey of the static scheduling algorithms

in hard real-time systems. Chapter III designs the optimal

scheduling algorithms for handling graph-based hard real-time

specification. Chapter IV contains the conclusions and

recommendations for the future work.
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II. SURVEY OF PREVIOUS WORK

Much research has been done on hard real-time scheduling

problems. There are different kinds of problems corresponding to

scheduling. We describe the scopes of scheduling problems in this

chapter as well as the current research related to each.

A. SOME DEFINITIONS AND TERMS ABOUT SCHEDULING

PROBLEMS

We introduce some concepts and definitions which are often used

in scheduling problems.

1. PROBLEM CLASSIFICATION

Scheduling approaches and scheduling systems are classified

as static or dynamic, and as centralized or distributed.

a. Static approaches and dynamic approaches

Algorithms for scheduling tasks in hard real-time

systems can be classified as static or dynamic. A static approach

calculates schedules for tasks off-line and requires complete prior

knowledge of tasks' execution times. A dynamic approach determines

schedules for tasks on the fly and allows tasks to be dynamically

invoked. The advantage static approaches is their low run-time cost;

however, they are inflexible and cannot adapt to a changing

environment or to an environment whose behavior is not completely

predictable. The dynamic approaches are flexible and can easily

adapt to changes in the environment, but they involve higher run-

time cost. (Ref. 39: PP. 150-173]
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b. Centralized system and distributed system

A centralized system is one in which the processors are

located at a single point in the system and the inter-processor

communication cost is negligible compared to the processor execution

cost. A multiprocessor system with shared memory or a

multiterminal system using the same processor is the example of

such system. In contrast, a distributed system is one in which the

processors are distributed at different points in the system and the

inter-processor communication cost is not negligible compared to the

processor execution cost. A local area computer network is an

example of such system.

2. PROBLEM DEFINITION

A scheduling problem in a hard real-time system is defined

by the model of the system, the nature of tasks to be scheduled, and

the objectives of a scheduling algorithm.

a. System models

A hard real-time system consists of two parts: hardware

and software. Hardware includes those devices which are required to

execute all the strategies in hard real-time system. Those which not

belong to hardware are softwares. Software includes PSDL, static and

dynamic schedulers etc. Current PSDL does not represent hardware

structures. The resources refer to those things which are available

for the scheduling. They might be hardware devices, data, or

programs; however, the only resources shared by tasks in PSDL are

data streams and processors.
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b. Nature of tasks in PSDL

A task is a software module that can be invoked to

perform a particular function. A task is the scheduling entity in a

system [Ref. 8]. A task corresponds to a PSDL operator and

represented as a vertex in the PSDL implementation graph. A task is

characterized by its timing constraints, precedence constraints, and

required processors.

Tasks in hard real-time systems can be distinguished as

preemptive and nonpreemptive. A task is preemptive if its execution

can be interrupted by other tasks and resumed at the point of

suspension. A task can still be preemptive if the times when the task

can be interrupted are constrained. A task is nonpreemptive if it

must run to completion once it starts. [Ref. 6] compares preemptive

and nonpreemptive task schedules. Preemption can make tasks

easier to schedule. For example, consider a task system consisting of

three independent tasks of length 2 to be scheduled on two

processors. A nonpreemptive schedule for the system takes 4 units

of time. A shortest preemptive schedule on the other hand takes 3

units; a savings of 25%. Figure 10 on page 33 illustrates the

comparison [Ref. 6: p. 51]. However, the preemptive schedule also

have the following disadvantages:

(1). Preemption has overhead for context switching time

which is illustrated on Figure 10(c). If the schedule is long or the

switching -,5 frequent, it could not meet the Real-time requirements.

(2). Preemption is difficult to implement in Ada.
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Pi Tj T3 PI Ti T2

P2 T2 P2 T2 T3

1 2 3 4 1 2 3
Time - Time

(a) (b)

P1 TI CS T2

P2 T2 CS T3

1 2 3+CS

Time

(c)

Figure 10 The Comparison of Preemptive and Nonpreemptive
Schedules.

(a) Nonpreemptive (b) Preemptive schedules for a
system of three independent tasks of length 2
scheduled on two identical processors and (c)
Preemptive schedules accounting for context switching

Each task can be either periodic or nonperiodic. A

periodic task is defined as one which is invoked exactly once per

period P. Within P, the task must be scheduled to execute. Every

periodic task must have a specified period and may have a specified
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deadline. A nonperiodic task is one which is expected to execute just

once each time it is invoked. In PSDL tasks are invoked by the

arrival of new data values. It has an unknown arrival time and may

have a known deadline.

(1) Timing Constraints. The timing constraints of a

task are specified in terms of one or more of the following

parameters:

1. The arrival time, A: The time at which a task is

invoked in the system.

2. The ready time, R: The earliest time at which a task can

begin execution. The ready time of a task is equal to or greater than

its arrival time. When task is invoked but no processors are

available, the ready time is greater than the arrival time and the

task has been idle. The ready time refers to start time and the

arrival time refers to earliest start time in PSDL.

3. The maximum execution time, MET: The maximum

length of the execution interval (El) for the task. The execution

interval is the time length which a processor needs to execute the

task. The MET represents CPU time rather than real-time.

4. The deadline, D: The time within which a task must finish.

The deadline of each periodic task is an offset from its initial instance

and is represented as FINISHWITHIN in PSDL.

5. The maximum response time, MRT: The upper bound

on the response time of a nonperiodic task (optional). The response

time is measured from the end of the execution interval for the
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producer operator of the triggering data value to the end of the

execution interval for the consumer operator of the triggering data

value. It is the deadline for nonperiodic tasks.

6. The minimum calling period, MCP: The lower bound on

the calling period of the nonperiodic task (optional). The calling

period of an operator is the length of time between the end of the

execution interval for the producer of the triggering data value and

the end of the execution interval for the producer of the next

triggering data value. The calling period of nonperiodic task can vary

from one invocation to the next, unlike the period of periodic task,

which is fixed throughout the scheduling process. The calling period

is shown on Figure 12 on page 37.

A task is time-critical if it has at least one timing

constraint associated with it, and is non time-critical otherwise. The

starting time plus the MET must not greater than deadline. The

degree of freedom enjoyed by the static scheduler is characterized

by the slack, which is defined as the difference of deadline and MET.

Each periodic task must have a period and may have a

deadline. These two timing constraints partially determine the set of

scheduling intervals (SI) for the task. The scheduling interval is an

interval of time within which a task have to be completed and the

deadline must be met. Each periodic task must be fired exactly once

in each scheduling interval, and must complete execution before the

end of the scheduling interval. The period is the length of time

between the start of any, scheduling interval and the start of the next
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scheduling interval. Figure 11 on page 36 illustrates the relation

between the timing constraints, scheduling intervals, and execution

intervals for a periodic task [Ref. 29: P. 10]. For the case of

multiprocessor schedules, it sometimes makes sense for the length of

the scheduling interval to be longer than the period. In such cases

adjacent scheduling intervals may overlap.

SI[n] SI~n+l}

l[n] EI[n+lr---'I- 1 00

Time
S MET S

s_t(n)

Deadline

Period

s_t(n+l)

SI[n] = n-th scheduling interval
EI[n] = n-th execution interval
S = Slack
s-t(n) = starting time of task n
s_t(n+l) = starting time of task n+l

Figure 11 Timing Constraints for a Periodic Task
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SI(n]

PEI[n] CEI[n] PEI[n+1]F- - - - - -

Time
MRT

Calling Period

PEI[n] = n-th producer execution interval
CEI[n] = n-th consumer execution interval
SI[n] = n-th scheduling interval

Figure 12 Timing Constraints for a Nonperiodic Task

Timing constraints for nonperiodic tasks are optional.

Nonperiodic tasks with timing constraints must have both a

maximum response time and a minimum calling period in addition to

an MET. Figure 12 on page 37 illustrates the timing constraints for a

nonperiodic task [Ref. 29: P. 12].

(2) Precedence Constraints. The task system in hard

real-time scheduling is defined as (T,-<), where T is a set of tasks to

be scheduled on m processors and -< is a partial order on T that

specifies precedence constraints between tasks. A task Ti is said to

precede task Tj if Ti must finish before Tj begins. The precedence

relationships among tasks form a graph. If two tasks Ti and Tj are

processed on the same processor and Ti -< Tj, we have

starting_time(Ti) + MET(Tj) - starting time(Ti)

37



where < holds when the processor is idle. If Ti and Tj are processed

on different processors, this expression does not hold because they

occupy different resources.

(3) Resource Requirements. Resources in a computer

system can be categorized into two classes: active resources and

passive resources. An active resource has processing power and can

be used by at most one task at a time; CPU's and I/O processors are

instances of this type of resource. A passive resource typically can be

used in two different modes: When in shared] mode, severai tasks can

use the resource simultaneously; when in exclusive mode, only one

task can use it at a time. A file in a computer system is an example of

a passive resource: a file can be read by multiple users

simultaneously but can be written only by a single user at a time

[Ref. 41]. A scheduling problem with resource constraints consists of

a set of n tasks with given execution times, m processors, and

precedence constraint -<, together with a set R = {Ri,...,Rs} of resource

constraints. Each Rj is a function which maps the tasks into the

nonnegative integers, indicating the amount of the i-th resource

required by the task.

c. Objectives of scheduling algorithms

The function of a scheduling algorithm is to determine,

for a given set of tasks, whether a schedule (the sequence and the

time periods) for executing the tasks exists such that the timing,

precedence, and resource constraints of the tasks are satisfied, and to

calculate such a schedule if one exists.
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B. DESCRIPTION OF SOME SCHEDULING ALGORITHMS

1. THE TOPOLOGICAL SORT ALGORITHM

This scheduling algorithm is used in the initial version of

CAPS [Ref. 35]. The first level data flow diagram for the static

scheduler in this model is illustrated in Figure 13 on page 39 [Ref. 35:

P. 23]. The five components(bubbles) in the diagram are described

below.

Build-.

Op-name harmonic Op-name, timing-info
Timing info blocks grouped into blocks

Source

File Te Schedule
ReadPSDL preprocesso operators

Text- J ikfl ,r

lfile 

Lin file .

/ ntim-citia Sequence of operator

operators et Topological- names in precedence
opertors to ;S. v'v  .... ] order

dynamic scheduler sort

Figure 13 First Level Data Flow Diagram

In ReadPSDL, the static scheduler reads the PSDL source file

and collects operator names and timing information. The resulting

file is then run through a Textjfile-preprocessor where operators are

separated into time critical and non-time critical files. The non-time

critical operators are sent to the dynamic scheduler. The dynamic
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scheduler will schedule non-time critical operators into idle time

slots as well as any time remaining if a time critical operator

completes execution prior to its worst case execution time.

A harmonic block is a set of operators such that each

operator in the set has a period that is an exact multiple of the base

period and at least one of the operators has a period equal to the

base period. All of the operators in a harmonic block are required to

have periods that are exact multiples of the base period. Therefore, a

sporadic operator must be assigned a period which is known as its

equivalent period. To simply the algorithm, the operators are sorted

by period in ascending order. The base period is the greatest

common divisor (GCD) of the periods for all the operators in the set.

The precedence relationship among operators in the final

static schedule is done in Topologicalsort. It is a simple algorithm

that repeatedly finds an operator which must precede all others in a

set, concatenates that operator to a sequence of operators, and then

deletes that operator and all its edges from the set. This cycle is

repeated until all operators have been deleted from the set. The final

sequence then contains all operator names in a precedence order.

Finally, the operators within each harmonic block are

.cherdiled according to the precedence given by the topological sort

and the period constraints. Figure 14 on page 41 illustrates the

second level data flow diagram of the step [Ref. 35: p. 43]. The

topologically sorted schedule and the harmonic block schedule are
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combined at Select_next -operator. The Nextfiring-interval is

calculated by the following formula [Ref. 35: p. 43]:

Nextfiring-interval =

[ (Start time + period), (Start time + 2 * period - MET) ]

The lower bound of this formula ensures that at least the

length of one period will pass before the operator is scheduled to fire

again. The upper bound ensures that an operator is scheduled early

enough so that it can finish execution prior to the end of its period.

The theoretical development for the algorithms is available

in [Ref. 35]. It contains five algorithms: Topological sort of the

precedence relationship, Finding the harmonic block using GCD in

both single processor and multiple processors, Finding block length,

and schedule the operators. The implementation of this development

and the analysis of its performance is described in [Ref. 331.

Precedence

Schedule

See--ex-Find- Static schedule

Harmonic
block
schedule

Figure 14 Schedule-operators, 2nd Level Data Flow Diagram
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2. THE CRITICAL PATH METHOD

This method is proposed by Hu [Ref. 18]. The method deals

with a new sequencing problem in which n jobs with ordering

restrictions have to be done by men of equal ability. In our context,

the n jobs represent n independent tasks and the m men of equal

ability represent m identical processors.

Let Ni (i = 1, 2, ..., n) be n jobs that have to be done with

technological ordering restrictions. Ni -< Ni if Ni must precede Nj, Ni -

Nj if there is no ordering restriction between the two nodes. The

whole ordering restriction can be represented by a graph G

consisting of n nodes representing jobs and directed arcs

representing ordering restrictions. To ensure the jobs represented by

the graph G are feasible, there should be no cycles formed by

directed arcs of G. Figure 15 on page 43 illustrates an arbitrary graph

of the model.

Although a graph G may have more than one final node, the

assumption of only one final node does not lose generality. If there is

more than one final node in the graph G, we can create an artificial

node that is preceded by all final nodes in the graph and label it with

oxi = 1. For other nodes Ni, the label Xi is the length of the longest

path from Ni to this artificial final node. Hence, we shall assume that

the graph G has only one final node in the following. A node Nj is

called a starting node in the graph if there does not exist a node Ni

such that Ni-< Nj. A node Nk is called a final node in a graph G if
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there does not exist a node Ni in G such that Nk -< Ni . A node Nj is

called a current starting node if there is no node Ni in the current

graph such that Ni -< N j. In Figure 15, Ni is a final node and

Nio,Nii,N12,N13 are starting nodes. The length of a path is the number

of directed arcs in it. In Figure 15, the length of the path from Nil to

Ni is 3.

Figure 15 Example of Task Graph G

Assumptions:

1. All jobs require equal time which is one unit.

2. When a processor finishes a task, he can immediately

start on another.

3. The ordering restrictions on tasks are arbitrary.

43



4. There are no cycles formed by directed arcs of task

graph G.

Labelling process:

The labelling process assigns the path length labels ai to

the nodes Ni in the graph G in the following way.

A node Ni is labelled with Qi = Xi if Xi is the length of the

longest path from Ni to the final node in G. The final node has the

label 1. The process of labelling is equivalent to finding the longest

path from a node to the final node in G.

The labelling process can be done by starting with the

final node and tracing backwards. If a node can receive more than

one number (branching node in the graph), label it with largest

number it can receive.

Let p(ax) be the number of nodes with label a. In Figure

15, we have p(l) = 1, p(2) = 4, p(3) = 5, and p(4) = 3. Let s(ca) be the

number of starting nodes which have label a. In Figure 15, s(1) = 0,

s(2) = 0, s(3) = 1, and s(4) = 3.

Assume that we start from time t = 0. The subscript t is

used to indicate that t units of time have passed when the current

graph is obtained. Nodes that are finished are removed from the

graph. As time goes on, the current graph changes. The properties

pt(a), st(ct), and at are defined using the current graph at time t.

Algorithm:

1. Label all nodes with ai = xi + 1 where xi is the length

of the longest path from Ni to the final node in the tree.
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2. If the total number of starting nodes is less than or

equal to m, where m is the number of processors available, then

choose all starting nodes for execution at the current time.

3. If the total number of starting nodes is greater than m,

choose m starting nodes with values of cxi greater than or equal to

those not chosen. In the case of a tie, the choice is arbitrary.

4. Repeat the above steps for the remaining graph. The

algorithm stops when there are no nodes in the current graph.

Validation:

The algorithm can be described as 'cutting the longest

queue'. Although the algorithm is plausible and the idea is

straightforward, the proof that it completes all jobs at the earliest

time is somewhat long [Ref. 18: P. 846]. We will not discuss details of

the proof here.

This algorithm assumes there are precedence constraints

in tasks as well as identical processors. These assumptions are

similar in PSDL. However, there are some deviations from PSDL.

1. PSDL assumes each task in operator has equal MET, but

not unit time.

2. There could be cycles formed in PSDL data flow

diagram.

3. This algorithm appeals to search the tasks graph as

soon as possible, but does not test if every task meets its deadline. In

fact, there are no deadlines for tasks.
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3. THE CRITICAL PATH METHOD WITH UPPER BOUND

AND/OR LOWER BOUND

This method optimally schedules a sequence of interrelated

computational tasks on a multiprocessor computer system. The

scheduler is created statically. There exists a partial ordering

between the tasks. Tasks are assumed to be nonpreemptive and all

tasks are assumed to require one unit of processing time.

Finding the bounds:

There are two lower bounds to be determined: the

minimum number of processors required to process a task graph G in

the smallest possible amount of time and the minimum time

required to process a task graph G given a fixed number k of

processors. There are two partitions of the task graph; namely, E and

L partitions. The tasks Ti can be partitioned into I subsets (Ei, E2,

Et) called the earliest (or E or column) precedence partitions such

that

UE, = T

where T = {TI,...Tm I is tile set of tasks and EimrEj = 0 when i~j. The

meaning of the E-precedence partitions is as follows. Ei is the subset

of tasks that can be initiated and executed in parallel at the very

start. E2 is the subset of tasks that can be initiated and executed in

parallel after the tasks Ei are done and so on. The elements of Ei

represent those tasks that can be processed at the earliest time

corresponding to level i.
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The tasks {T} can also be partitioned into I subsets called

the latest (or L or row) precedence partitions (Li, L2, ..., I) such that
I

UL, = T
i-1

and LinLj = 0 when i;j. Li represents the subset of tasks that must

be executed at least by the end of level or job step i to complete the

job in the minimum number of levels I for which all the tasks could

be completed.

Given a process with n tasks (Ti, T2, ..., Tn) whose

relationships (dependencies) are indicated by a Single-Exit Connected

(SEC) graph with node I dummy, we have

Lemma 1: The number of partitions (levels, job steps) in

the E-type and L-type partitions are the same for any specific task

graph.

Lemma 2: Let E = (Ei, E2, ..., Ek) and L = (Li, L2, ..., Lk) be

the E and L partitions of a task graph. Then Ei r) Li 0 0 for all 1 < i <

1. In particular, in any SEC graph Ei = Li = [11.

Lemma 3: Ep rT Lq = 0 for all p < q.

Theorem 1: Given the dependency graph of a task set T,

the number of processors needed to compute the job in the least

possible time I is bounded below by

max { Ir) E,

and above by

min max {i , max {EI}
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Definition: [y is the smallest integer such that [y 2 y. 1 <

x < £ is an integer.

Lemma 4: Let k be the minimum number of processors

required to process a given task graph G in I+c units of time where c

is a nonnegative integer.

Let

max = m.
Vx'x:nt;lxS < X " C

Let

M= [m.

Then k -! M.

Corollary 1: Given k processors, let t be the minimum

time required to process a given task graph G.

Let

max { x + I L: } q

Let

LBT = t + [q.

Then t - LBT. So LBT is a lower bound on time required to process G

with k processors.

Corollary 2: Let

LBP ax max JL E, max L

UBP = min[(max f{JL ,max IE]
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Then LBP and UBP are lower and upper bounds, respectively, on the

minimum number of processors required to process a task graph G

with one exit vertex in the smallest possible time (i.e., in I time

units).

Algorithms:

There are three algorithms associated with this method.

Algorithm A is to determine the minimum number of processors to

process a graph in the smallest possible time. Algorithm B is to

determine the minimum time required to process a task graph, given

k processors. Algorithm C is to determine if a task graph G can be

processed in the minimum possible time with k processors. Before

describing these algorithms, we have to define some terms.

Definition: P(i) is defined as the set of predecessor tasks

of task i and written as P(i)={j I j < ij. S(i) is defined as the set of

successor tasks of task i and written as S(i)={j I i < j}.

Definition: Let t(i) be the processing time required by

task i. A set of tasks il, ... , ik are said to be equivalent if P(il)=P(i2)= ...

=P(ik), S(il)=S(i2)= ... =S(ik) and t(il)=t(i2)= ... =t(ik). A task i dominates

task j if and only if P(i)-P(j),S(i)-S(j), and t(i)=t(j).

Theorem 2: If task i dominates task j, then there exists an

optimal solution in which task i is started before or at the same time

as task j.

A state in the dynamic program is described by two sets

(J,P) where J = {j 1, j2 ... , jq}; j,. E (1, 2, ..., n} for all v; P =

{pl(rl),p2(r2),...,pu(ru)}; and P, E {1, 2, ..., n) for all v, where n
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represents the number of tasks in task graph. The rv are integers

where 0< rv< tpv. The item Pv(rv) means task Pv requires rv additional

units of processing time to be completely processed at the current

time, v=1,2,...,u. State (J,P) at the i-th level represents a set of tasks

that are completely or partially processed at the end of the i-th unit

of time. The elements of J and P are all vertices of the task graph. A

state (J,P) is said to be infeasible if there exists tasks a and b such

that: 1) a<b; 2) a f J; and 3) b E (J u P).

The remaining task graph R(J,P) of a state (J,p) is the

subgraph of the task graph obtained by deleting all vertices in (JUP).

A state (J,P) is said to be terminal if the optimal schedule for

processing the remaining task graph R(J,P) has been determined. A

nonterminal state (J,P) is said to be extended if the successor states

of state (J,P) have been constructed. All tasks require equal

processing times.

A. Algorithm A

// This algorithm determines the minimum number of

processors needed to process a graph in the smallest

possible time. //

Initialization: Determine LBP and UBP from the formulas

described above;

i-th Step: i = 1, 2, 3 .....

If LBP = UBP, stop;

// the minimum number of processors required is LBP //
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If LBP < UBP, use Algorithm C to determine if it is possible to

process G in I time units with LBP processors.

If it is possible, stop.

// the minimum number of processors required is LBP II

Else put LBP = LBP + 1; go to the (i+l)th step.

// not possible i

B. Algorithm B

// This algorithm determines the minimum time required to

process a graph, given k processors. //

Initialization: Construct one state at the first level.

// this is the state { I) consisting of just task 1. //

Process i-th level: i = 2, 3 ....

1) IF all states at the (i-1)th level have been terminated,

go to step 2.

ELSE go to step 3.

2) Pick the terminal state with the minimum cost; stop.

// the schedule corresponding to the minimum cost

terminal state is the optimal schedule //

3) IF all the states in the (i-1)th level have been either

terminated or extended, process the (i+l)th level.

ELSE go to step 4.

4) Pick any state S at the (i-l)th level that has not been

terminated or extended.

Determine the remaining task graph R(S) for S.

IF R(S) is a tree, go to step 5.
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ELSE go to step 6.

5) Determine T(S).

// the minimum time required to process R(S)

using Hu's algorithm //

Terminate S with a cost of T(S) + i - 1. Go to step 1.

6) Extend S to the i-th level. Let D(S) = (j1, ..., jq) be the

candidates for processing at the next unit of time.

Construct a successor state to S for each distinct subset

{il, i2, ..., ik) of D(S).

There are, therefore, (qk) such successor states.

// we define (qk) = 1 if q < k //

Eliminate all dominated states from further consideration.

Go to step 1.

C. Algorithm C

// This algorithm determines if a task graph G can be

processed in the minimum possible time with k processors.

//

Initialization: Construct a state {1) at the first level.

// This state consists of just task 1. //

Process i-th level: i = 2, 3, 4.

1) IF all the states at the (i-I)th level are marked "limit

exceeded", stop.

// It is not possible to process the task graph in I units of

time. //
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2) If all the states at the (i-I)th level are either extended or

marked "limit exceeded", process the (i+l)th level.

ELSE go to step 3.

3) Pick any state S at the (i-1)th level that has not been

extended or marked "limit exceeded".

Use Corollary 1 to determine LBT(S),

/H a lower bound on the time required to completely

process the remaining task graph R(S) //

IF LBT(S)> I - (i-I), mark state S with "limit exceeded".

Go to step 1.

IF LBT(S) <= 1(i-1), go to step 4.

4) IF R(S) is a tree in which all tasks have equal time,

go to step 5.

ELSE go to step 6.

5) Determine t(s),

// the minimum time required to process R(S) //

IF R(S) is a tree with all tasks of equal processing time,

it can be shown that t(s) = LBT(S). Hence t(s) <= e - (i-l);

stop.

// there does exist a schedule for processing the task

graph G in I units of time //

6) Extend S to the i-th level. Let D(S) = {jl, ..., jq} be the

candidates for processing at the next unit of time.

Construct a successor state to S for each distinct subset

{il, i2 ... , ik) of D(S).



Eliminate all dominated and infeasible states from further

consideration. Go to step 1.

Validation:

The efficiency of the algorithm clearly depends on the

"tightness" of the bounds LBP and UBP [Ref. 37: P. 140]. [Ref. 37]

indicates that these bounds are quite tight; however, [Ref. 10] gives

lower and upper bounds for the minimum number of processors and

to a lower bound for the minimum time, which are sharper than

these values, and should give a more efficient version of this

algorithm.
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III. DESIGN OF OPTIMAL STATIC SCHEDULING ALGORITHMS

We introduce three algorithms in this Chapter. In Section A, we

design an algorithm called CP/MASPF (Critical Path/Most

Accumulated Successive Paths First). There are many tasks in the

task graph to be scheduled. There are precedence constraints on the

tasks; however, the timing constraints are not considered. In such a

case, the purpose of scheduling is to find an algorithm to execute all

the tasks in the graph as soon as possible.

In the rest of this Chapter, starting from Section B, we consider

scheduling the tasks in PSDL. Tasks in PSDL have timing constraints

associated with them, such as earliest starting times and deadlines.

In this case, the purpose of scheduling is not to finish the task graph

as soon as possible but rather to finish them with the least tardiness.

Scheduling PSDL tasks in multiprocessor systems can be

described as the following steps:

1. Construct a graph of constraints, and

2. Find a possible schedule from the graph.

In Section B, we describe the PSDL operators' characteristics. In

Section C, we describe a way to construct the constraints graph of

tasks. In Section D, we discuss all the timing properties. Any

sequence which is feasible must not violate any timing constraint.

We provide two heuristics to solve PSDL scneduling on

multiprocessors in Section E. In Section F, we provide two techniques

to search for the optimal solution.
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A. THE CRITICAL PATH/MOST ACCUMULATED SUCCESSIVE

PATHS FIRST ALGORITHM (CP/MASPF)

1. Preliminary Problem Description

We consider a scheduling problem which can be formulated

as follows. There are n tasks with known times to perform each task

and with technological ordering restrictions among the tasks. Each

processor can execute any task; however, each task can be executed

on only one processor at a time. We assume that the task is non-

preemptive. There are two questions to answer.

1. Assuming that all tasks must be completed by time t, find

a schedule that requires the minimum number of processors. It is

assumed that all the processors are of equal ability and each of them

can do any of the n tasks.

2. If m processors are available, arrange a schedule that

completes all tasks at the earliest possible time.

The critical path method is the most efficient technique to

solve such problems. This algorithm is described in Chapter two. This

method was first proposed by Hu [Ref. 18]; however, this was a

simplified version in which all tasks require equal time. The tasks do

not necessarily have unit processing time in [Ref. 37]. They solve the

problems by using upper and lower bounds on both processors and

total execution time.

Hu assumes that the choice is arbitrary when the priority is

equal among those tasks. Since the priority order cannot be

determined uniquely when there exists a plurality of tasks having
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one and the same level, there still exist some open problems. In [Ref.

211, this approach is modified so that the task having the largest

number of immediately successive tasks is assigned the highest

priority. This method is called the CP/MISF (critical path/most

immediate successors first).

In our algorithm, we will assume that tasks can have

different processing time; in such a case, the processing time of a

task is the sum of unit processing times. If task Ti requires ti units

of processing time (ti>l), we replace task Ti by ti tasks which require

one unit of processing time.

We introduce a heuristic method called Critical Path/Most

Accumulated Successive Paths First (CP/MASPF). This method is

similar to Critical Path method; however, it exploits the priorities of

tasks which have the same level. The CP/MISF method also

introduces such priorities, but focuses on the immediate successors

and then loses some power.

In Hu's algorithm, the choice is arbitrary if two or more tasks

have the same priority. The CP/MISF improves Hu's algorithm by

solving the competition of these tasks . The CP/MASPF method also

solve this problem but using different approach.

2. Description of CP/MASPF Algorithm

We label each node in the task graph with a pair of integers.

The first element of the pair represents the level of the node in the

task graph. The second element of the pair represents the number of

paths accumulated after such node.
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<3,1> <2,1>

<2,1>

Figure 17 Task Labelling and Path Calculation as the Two
Elements of Nodes of the Graph
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In the first step of task labelling, we assign a level number to

each node which represents a task in task graph G. This graph

contains a dummy final node which represents the end of the

schedule. A node Ni is labelled with cxi = xi + I if xi is the length of

the longest path from Ni to the final node in G. The final node is

labelled 1. Figure 16 on page 58 i'uistrates the task labelling of the

task graph. The number inside the circle represents the task number.

In Figure 16, the path length from node 17 to node 1 is 3; so the

level of node 17 is then (X17 = 3+1 = 4. Nodes 11, 12, 13, and 14 have

the same level which is three.

Figure 17 on page 59 illustrates the second step of the

method, which is the calculation of accumulated path number

between the current node and the final node. The number of

accumulated paths successive to node i is denoted as Pi. In Figure 17,

node 2 has only one path to the final node, so the accumulated path

number is 1. Node 16 has two paths to the successive nodes which

are node 13 and 14. These nodes have three and four directly

successive nodes respectively. The accumulated path number of node

16 is then P16 = 3+4 = 7.

It is very easy to calculate the accumulated successive path

number of each node. We start with the final node and trace

backwards. All the nodes labelled with <2, > have only one path to

the final node. In such a case, Pi = I for all nodes i with ci = 2. It is

important to note that we assume only one final node exists. If node i

has n immediate successors, the accumulated successive path
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number is the sum of the accumulated path numbers of the direct

successor nodes.

We can calculate the number of the accumulated paths

successive to each node backwards as well as the level number for

each node. This means we can do both these two things with just one

pass through the task graph.

The scheduling algorithm uses the labelled task graph as

follows. If the number of available processors is greater than or

equal to the number of current starting nodes, assign all of these

tasks to available processors.

If the total number of current starting nodes is greater than

the number m of available processors, choose m current starting

nodes with the highest priorities, where priorities are determined as

follows. If two tasks have different level numbers, the one with a

larger level number has a higher priority. If the tasks have the same

level values, those tasks which have more successive paths (Pi) have

higher priorities than those with fewer successive paths.

The CP/MASPF method consists of the following steps.

Step 1: Determine the level cxi as well as the accumulated

successive paths Pi for each task.

Step 2: Construct the priority list in the descending order of

Qi and pi for nodes without predecessors. If tasks have different

level values, then tasks with higher values have higher priorities. If

tasks have same values, then tasks with higher Pi values have higher

priorities.
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nodes whose only predecessor is removed from the graph are added

to the priority list in the proper order. Removing a node without any

predecessors does not change the level number or successive path

number of any other node in the graph.

Figure 18 on page 62 gives an example of this algorithm.

Given Figure 17 and there are only two processors available, Figure

18 shows how to choose the tasks. Since we have only two

processors, we should choose two nodes among nodes 15, 16, and 17.

These three nodes have the same values as the first elements in their

integer pairs.

According to the algorithm, we should compare the second

atoms of the three integer pairs. Node 15, 16, and 17 have the values

3, 7, and 5 respectively. We then choose nodes 16 and 17 first. This

rule is repeated for the remaining graph until all the nodes are

chosen.

It is important that task labelling and accumulated path

number calculating can be done in parallel. Thus the calculation of

the number of accumulated paths does not influence the

computational complexity. Hu had shown that CP method completes

all jobs at the earliest time [Ref. 18: PP. 846-848]. The CP/MASPF

method is based on CP method and solves the problem of same

priority tasks heuristically, which is not discussed in [Ref. 181. As a

result, the CP/MASPF method is also optimal.

In order to compare the deviation, consider Figure 17 as an

example. Suppose we have a task graph illustrated in Figure 17 and
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two processors. By using Hu's algorithm, nodes 15, 16, and 17 have

the same priority which is 4. Therefore, two of them are chosen

randomly. By applying CP/MISF method, nodes 15 and 16 have two

immediate successors which have the second high priority. Although

node 17 has two successors, only one of them has second high

priority. The choice is then nodes 15 and 16 first. If we apply

CP/MASPF method, nodes 16 and 17 are chosen first. It is reasonable

to choose nodes 16 and 17 first because there are more nodes which

cannot be processed without finishing these two nodes.

B. OPERATORS AND TASKS

The PSDL language is based on a computation model which treats

software systems as networks of operators communicating via data

streams. As we mention in Chapter one, this model is an augmented

directed graph G = (V, E, TC(v), C(v)), where V is the set of vertices, E

is the set of edges, TC(v) is the set of timing constraints for each

vertex v, and C(v) is the set of control constraints for each vertex v.

The definition of PSDL operators is in Chapter one. We consider

only periodic PSDL operators in our scheduling algorithms. Each

periodic operator appears more than once during the execution of the

problem. We define a task as each instance of any operator.

Each periodic operator in PSDL is time-critical; namely, an

operator with at least on timing constraint associated with it. Some of

the timing constraints are defined in Chapter two. In PSDL, T(v) is

the set of timing constraints of each operator. The timing constraints

can be divided into two subsets: the original constraints and the
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derived constraints. The original PSDL timing constraints contain the

following attributes:

1. MET(k) : Operator k requires at most MET(k) time units of

processing.

2. PERIOD(k) : Period of the operator k.

3. FINISHWITHIN(k) : Maximum time allowed to finish operator

k after the earliest start.

The derived PSDL timing constraints contain the following

attributes:

1. PHASE(i) : Phase of the base operator of task i.

2. INSTANCE(i) : The rank of task i in the sequence of instances of

the base operator. The sequence is ordered by starting time, and the

first instance has instance number zero.

3. EARLIESTSTART(i) : Earliest possible starting time for task i.

4. DEADLINE(i) : The latest time by which task i must be

completed.

5. COMPLETION(i) : Time when the task i is actually completed.

6. TARDINESS(i) : The amount of time by which i missed its

deadline, negative if task i completed before its deadline.

7. NUMBEROFINSTANCES(k) : The number of instances of

operator k in the harmonic block.

In order to compare MET, FINISHWITHIN, and deadline of

operator, Figure 19 on page 66 shows a modification of Figure 8. The

derived timing '-onstraints are not defined by the user, they are
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determined by the scheduling algorithm during the analysis of the

problem.

SI[0] SI[l]

EI[0] EI[1]

TO FT 1I

Time
S MET S

PH FINISHWITHIN FINISHWITHIN

Period

Deadline of taskl
4w

t=O Deadline of task2

SI[O], SI[l] = n-th scheduling interval of operator(i) with
n = 0 and n = I respectively

EI[O], El[l] = n-th execution interval of operator(i) with
n = 0 and n = I respectively

S = Slack; PH = Phase
TO = first instance of operat-rr(i)
TI = second instance of operator(i)

Figure 19 Midified Timing Constraints Diagram for a Periodic
Task
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P E CE OPERATOR PERIOD MET
GRAPHB

A 10 3

B 10 4

C 10 2

Phase C

SEQUENCE
Phase B

ABC '
A B C
I II II I -

1 2 3 4 5 6 7 8 9 10

Phase B

ACB Phase C

A C B

1 2 3 4 5 6 7 8 9 10

Figure 20 Possible Phases of an Operator

Each operator in PSDL has a phase. The phase of the task is

defined as the delay between the reference time zero and the

starting time of the first scheduling interval for this operator, 0 -

phase -< period. The phase is a function of the operator and the
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permutation of operators chosen. Figure 20 on page 67 illustrates the

relationship [Ref. 5].

To simplify further manipulations on the data, two dummy

operators are included in the set of vertices V: the dummy operator

V(0) and the dummy operator V(n+l), where n is the number of

operators in the original set V furnished by the user. Since V(0) and

V(n+l) are dummy operators, the original set of operators is counted

from V(l) to V(n).

Each atomic operator i in the original set of operators should meet

the following timing constraint:

TC(i).MET - TC(i).FINISH_WITHIN

This constraint does not apply to the two dummy operators.

C. CONSTRAINT GRAPH OF PSDL OPERATORS

1. Description of the Steps to Obtain the Graph of

Constraints

The graph of constraints shows all of the tasks in a repeating

harmonic block, which will be the basis for the static schedule. Each

operator corresponds to one or more tasks in the graph of

constraints. Each task is an instance of the associated operator. The

number of tasks depends on the ratio of the period of the harmonic

block to the period of the operator.

The graph of constraints is completely defined and evaluated

using the algorithms described in the following subsections. There

are six steps to generate a DFD of the global algorithm to generate the

graph of constraints [Ref. 5].
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Figure 21 The First Level DFD Graph of Constraints

1. Evaluation of the GCD of the operators,

2. Evaluation of the LCM of the operators,

3. Evaluation of the number of tasks in the graph of constraints,

4. Generation of chains of tasks,

5. Interconnection of the chains, and

6. Reordering the graph of constraints.

Figure 21 on page 69 shows the first level of DFD.
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Figure 21 on page 69 shows the first level of DFD.

2. Length of the Harmonic Block

In order to obtain the graph of constraints, we need to define a

time frame. The approach that we selected is to define a harmonic

block as described in [Ref. 35: pp. 34-41]. This harmonic block, if

repeated in time, ensures that all the time-critical operators are

performed within their timing constraints. This means we will map

the harmonic block to our constraint graph.

The length of the harmonic block is simply the least common

multiple (LCM) of all the operators that belong to the set in analysis.

The LCM is computed by taking two periods at a time, multiplying

them together, and then dividing this result by the greatest common

divisor (GCD) of the two periods. This result is then multiplied

together with the next period and divided by their GCD until all

operators in the set have been processed. The result of this operation

on the last pair in the set is the LCM of all operators in the set. The

algorithm to find GCD is in [Ref. 35: p. 37]. The algorithm to find LCM

is in [Ref. 35: p. 41].

3. Tasks in the Graph of Constraints

The tasks are the instances of each operator that must be

executed inside the time frame. The number of tasks for each

operator is obtained by dividing the time length of the harmonic

block by the period of the corresponding operator. The result of this

operation is stored in the derived timing constraint records of TC(v)

for each operator.
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ALGORITHM FOR NUMBER OF TASKS

N_MAX := number of operators in the set V, LCM as

defined before;

For N in I .. (N_MAX) loop

// need not consider dummy operators I/

TC(N).NUMBER_OF_TASKS := LCM / TC(N).PERIOD;

end loop;

// End of algorithm. //

Example 1: Suppose we have the following data:

Operator period

0 - (dummy operator)

1 10

2 4

3 6

4 - (dummy operator)

then we have GCD = 2 and LCM = 2*5*2*3 = 60.

Step 1: NMAX = 3, LCM = 60.

Step 2: N = 1, T(1).NUMBEROFTASKS = 60 / 10 = 6.

Step 2: N = 2, T(2).NUMBEROFTASKS = 60 / 4 = 15.

Step 2: N = 3, T(3).NUMBEROFTASKS = 60 / 6 = 10.

4. Precedence Constraints of the Tasks

The generation of the graph of constraints of the tasks is

done in two steps. During the first step we produce a partially

ordered set of tasks for each operator, and in the second step we use
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the precedence constraints among the operators to generate the

precedence constraints among the tasks.

The tasks for each operator are ordered according to the

principles explained next. We can describe precedence relationships

using a mathematical formula as well as an abstract data type. Let i

and j be two different tasks. The precedence relationships among the

set of tasks for a single operator are defined by the following.

i -< j iff phase(k) + period * i + finishwithin

-< phase(j) + period *j;

where i and j are instance numbers.

The precedence relation for the instances of an operator is a

single chain if finishwithin 5 period, and has multiple chains

otherwise.

A partially ordered set (poset) is called a chain if exactly one

permutation is feasible (is consistent with the partial ordering) [Ref.

5].

We can also define the precedence relationship as a boolean

operation on the precedence-relation data type with the following

interface:

Function precedes (i, j: node; R: precedencerelation)

return boolean;

-- True if i -< j.

The interconnection of chains of tasks is based on the

following relation. Suppose O1, 02 are operators and Ti, T2 are
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corresponding tasks with instance numbers I1, 12 and with periods

P1, P2. We have

TASK(Ti).OPERATOR_NUMBER = 01,

TASK(T2).OPERATORNUMBER = 02,

TASK(Ti).INSTANCENUMBER = I1,

TASK(T2).INSTANCENUMBER = 12,

TC(Oi),PERIOD = Pi, and

TC(02).PERIOD = P2.

We generate the precedence relations (graph of constraints)

via the following operation:

Function taskedge(O, 02: operator; Ti, T2: task)

return boolean

-- True if there is an edge from O1 to 02 in the PSDL

-- graph G and Pi * II = P2 * 12.

The first instance of each operator i is preceded by the

dummy operator 0 if and only if there is no other task that precedes

i, and the last instance of each operator i precedes the dummy

operator N+I if and only if it does not precede another task.

The elements TASK(O) and TASK(TASK_LENGTH+1) (the only

instances of the dummy operators V(0) and V(N+I), respectively) are

dummy tasks used in the construction of the graph of constraints.

Algorithms for generating chains of tasks and for

interconnecting chains of tasks are available in [Ref. 5: PP. 83-871.

We only introduce an example used in [Ref. 5].
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B

Precedence Constraints

Figure 22 Precedence Constraints

Suppose we have an operator graph with precedence

constraints as illustrated in Figure 22 on page 74. The operators A, B,

C, D have periods of 10, 15, 5, 30 time units respectivzly and

finishwithin = period for all the operators. After appl,'ing the

algorithms of LCM and number of tasks, the data available for the set

V and T is the following:

i V(i) T(i).PERIOD LCM T(i).NUMBEROFTASKS

0,5 dummy - - -

I A 10 30 3

2 B 15 30 2

3 C 5 30 6

4 D 30 30 1
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Graph of Constraints

Task I OP Instance

I

2 10

3 1 1

4 12

5 2 0

6 2 1

7 3 0

8 3 1

9 3 2

10 3 3

11 3 4

1 12 3 5

13 4 0

14 -

Task Description

Figure 23 Chains of Tasks
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0 10 20

Gah of Constraints

Figure 24 Graph of Constraints

In this case we have a single chain for each operator because

finish_within < period. Using the algorithm to generate chains of

tasks, we can get Figure 23 on page 75, and an application of the

algorithm to interconnect chains of tasks is illustrated in Figure 24 on

page 76.

Suppose there are rn processors. After we create the graph

with interconnecting chains, we can schedule all the tasks in graph to

these m processors. Heuristics for doing this are presented in Section

E

D. COST FUNCTION

The performance objective of meeting task deadlines is the

scheduling criterion applicable to PSDL. All periodic PSDL operators
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have earliest times as well as deadlines. The most important goal in

scheduling the tasks is that the resulting schedule should meet these

timing constraints.

We need to introduce some concepts for the analysis and

evaluation of cost functions on a set of sequences S = {s(1), ..., s(m)}

which contain tasks. Each sequence s(m) = [s(m,1), ... , s(m,n)]

represents the sequence of tasks performed by the m-th processor,

in the order in which they are performed.

The cost function assigns an integer value (or cost) to each set of

sequences. There are many ways for us to assign n tasks to m

processors. Each processor has one and only one sequence of tasks.

This sequence is a subset of n tasks. The input to the cost function is

a set of m sequences. The cost function calculates the maximum

tardiness of the best schedule with the given processor assignments

and task sequences.

For each sequence assigned to a particular processor, we define

this sequence as legal if it satisfies the precedence constraints

represented by the graph of constraints, and as feasible if and only if

it satisfies simultaneously the precedence constraints represented by

the graph of constraints and the timing constraints.

The tasks in each feasible sequence being evaluated obey the

following equations:

(1). Tardiness(i) = Completion(i) - Deadline(i)

(2). Completion(i) = Start(i) + MET( OP(i) )

(3). Start(i) = max { Completion(slp(i), q(i)-l]), EarliestStart(i) 1,

77



where p(i) is the processor identifier of task i and q(i) is the

position in s of task i.

(4). s[m,0] = 0, Completion(0) = 0

(5). EarliestStart(i) = Phase (OP(i)) + Instance(i) * Period(OP(i))

(6). Phase( OP(i) ) = Earliest_Start(j),

where OP(j) = OP(i) and Instance(j) = 0

(7). Phase ( OP(i) ) 5 Start(j) - [Instance(j) * Period( OP(j) )]

for all j such that OP(j) = OP(i)

(8). Deadline(i) = min { Earliest_Start(i) + Finish_within( OP(i) ),

Length.of-harmonicblock + earlieststart(p) }

if task i is scheduled on processor p.

To check if a legal sequence is feasible is to check if all the tasks

in the sequence meet the tardiness constraints. To check if the

multischedule for multiprocessor is feasible is to check if all the

sequences corresponding to these processors are feasible. If at least

one task in a sequence cannot meet the constraint then we say that

this schedule is not feasible. If at least one sequence in a

multischedule is not feasible, we say this multischedule is not

feasible. If there is no feasible multischedule, we have to find an

optimal one. Section F will offer some methods to solve this case.

The algorithm for evaluating the cost is illustrated as follows:

Evaluatesequences(number ofprocessors: in integer;

multischedule: in set(sequenceItask)};

cost: out integer; feasible: out boolean) is

begin
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cost := infinity;

for each sequence s in multischedule loop

cost := max(coct, tardiness(t)),

if tardiness(tj)) > 0 then

feasible := false;

end if;

end loop;

end evaluate-sequences;

E. HEURISTICS FOR ASSIGNING TASKS TO PROCESSORS

As we mentioned ih Section D, there are many ways for us to

assign n tasks to m processors. There are two questions derived from

this point: what order should the processor do the task and which

processor should do which task. Algorithm A provides a heuristic for

solving these two questions. One way to solve the competition

between tasks is most-urgent first-serve, which is also called earliest

task deadline/processor ending time first and described as follows:

1. Algorithm A: Earliest Task Deadline/Latest

Processor Ending Time First

create a task graph with interconnecting chains by using the

algorithm described in Section C;

remove the dummy nodes 0 and n+l;

while the task graph is not empty loop

find the set of nodes S which have no ancestors.

choose task t from S with the earliest deadline;

choose processor P with the latest ending time such that
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ending_time(P) < deadline(t) - met(t);

schedule task t on processor P;

remove task t from the task graph;

end loop;

evaluatesequences(numberof.processors, tasks.processed);

// check the cost function (defined in Section D of this Chapter)

to see if the sequences are feasible /

end Algorithm A;

The reason to assign earliest deadline task with highest priority

is to ensure that task can meet its deadline as well as possible. The

reason to choose the processor with the latest feasible ending time is

to minimize the processor idle time. We provide another heuristic

next.

2. Algorithm B:

Earliest Task Start Time/Most Available Processor First

multischedule(number-of-processors: in integer; TASK: in (task);

multischedule: out (sequence (task))) is

begin

while TASK is not empty loop

to) := j I for all x, start(j) <= start(x)

-- select task which has earliest start time

remove(tj), {task));

if (p(i) I ending time of p(i) <= earliest start to)) is not

empty then

select p(i) with the latest ending time such that
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ending time <= earliest start;

-- otherwise it will have more idle time for

-- processor

else

select p(i) with the earliest ending time;

-- shortest time for t(j) to wait

end if;

end loop;

schedule task t(j) on processor P(i);

evaluate-sequences(multischedule,number of-processors);

end multischedule;

Figure 25 on page 82 illustrates the assignment of tasks using

Algorithm B. Figure 25 gives two critical cases:

1. Task comes before an), processor is ready, and

2. Task comes after at least one processor which is ready.

By applying our algorithm, case I will choose processor(2) and

case 2 will choose processor(3).

F. FINDING THE OPTIMAL SOLUTION

One way to find if there exists ci-timal solution for multiprocessor

scheduling is to search all the possible nodes in the multischedule

space graph. There are two attributes in the multischedule space

graph: nodes and edges. The nodes in the graph represent tasks to be

scheduled. The edges in the graph represent how we assign nodes to

processors. The first algorithm to search for the optimal solution is

described as follows:
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processor

Start(t(i)) Start(tj))

S(m) 111

S(m-1)

S(3) Case 2

S(2) Case I

S(1) _

time

t(i) ~ t(j)

S(l).. S(m): Sequences corresponding to processors
t(i), t(j): Tasks i and j
Start(t(i)), Start(to)): Starting time for task i and j
Case 1: Choose processor(2) for shortest task waiting time
Case 2: Choose processor(3) for shortest processor idle time

Figure 25 Example for Tasks to Choose Processors
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findmultischedule(number ofiprocessors: in integer; cost: out

integer; best-sequence: out (sequenceftask))) is

cost := infinity;

begin

for each possible set of sequences ms

if tardiness(ms) < cost then

-- ms means multiple sequences

cost := tardiness(ms);

best-sequence := ms;

end if;

end loop;

end findmultischedule;

The tardiness function can be calculated using the

evaluate-sequences procedure given in Section C. The algorithm

described above is very slow. It supports a way to traverse all

possible combinations and then finds a best one. A better method to

find an optimal solution is to use the branchandbound technique.

This method can help us avoid cxpanding those nodes whose

estimate values are worse than current one. The algorithm is

illustrated as follows:

findmultischedule(g: graph; multischedule: out {sequence{task));

feasible : out boolean;

bestschedule: out set{sequence(task))) is

bestcost : integer := infinity;

begin
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branchandbound(g, multischedule, best_cost, best-schedule);

feasible := (bestcost <= 0);

end findmultischedule;

branchandbound(g: graph; ms: [seqbence task));

best-cost: in out integer;

bestschedule: out (sequence(task))) is

begin

if g is empty and cost(ms) < bestcost then

bestcost := cost(ms);

end if;

for each node n in g such that predecessors(n) = { } loop

case i in [1 .. number_of-processors]

if max (cost(append(n,ms,i),

leastcost(g-n, append(n,ms,i))} <

-- node n appended to sequence i of ms

bestcost then

branchandbound(g-n, ms(i)II [n], bestcost);

end if;

end case;

if bestcost <= 0 then return; end if;

end loop;

end branchandbound;

leastcost(g, ms) =
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max n: node in g of

latestendingjtime(ms) - deadline(n) +

( sum(MET(m) such that m in ancestors(n) and not m in

ms(i)) where i in [1 .. numbef_of_piocessors] )

/ (number of processors);

end leastcost;
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IV. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE

WORK

A. SUMMARY

This thesis provides an introduction to real-time systems which is

different from traditional computer systems. There are two main

software engineering methodologies, the traditional life cycle and

rapid prototyping. In particular, the rapid prototyping methodology

was discussed as a pioneering approach to the development of

software more efficiently and at less cost and risk. Rapid prototyping

is supported by a particular language called Prototype System

Description Language. The Computer Aided Prototyping System

(CAPS) was introduced as a software engineering tool that is

currently being designed. This tool will enable software designers to

exploit rapid prototyping to its fullest by automating the construction

of executable prototypes. The execution support system is the

component within the CAPS which makes the PSDL language

executable. The major contribution of CAPS to the advancement of

software engineering technology lies in the fact that the executable

prototypes can be automatically generated by the use of

specifications and reusable software components.

We define some scheduling terms and basic concepts needed to

schedule tasks in multiprocessor systems. We survey previous

research in this field. The harmonic block with precedence
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constraints scheduling algorithm is used by CAPS. The idea of

harmonic block is adapted in this thesis. The critical path method is a

kind of heuristic. Originally it was created for the task . which have

only a precedence relationship. It can also be applied in task systems

with timing constraints. The critical path method with upper bound

and/or lower bound algorithm is an extension of the critical path

method. It uses another approach to show that there exists bounds in

the scheduling algorithm. The efficiency of the algorithm depends on

the tightness of the bounds. The sharper the bounds are, the more

efficient this method is.

There is no polynomial algorithm for optimal multiprocessor

scheduling with deadlines and precedence constraints found so far.

Even if we prove that these problems have no polynomial time

algorithms, we still have to solve them. We can simplify the

problems or use heuristic methods to approach practical solutions.

We design three algorithms for different situations. We design an

algorithm called Critical Path/Most Accumulated Successive Paths

First (CP/MASPF). We suppose that there are no timing constraints in

this method. The scheduling goal is to create a schedule as soon as

possible, meeting the precedence constraints. The deviation from

other research is that it solves the competition of the same priority

tasks, using accumulated paths as a measure.

Tasks in PSDL have timing constraints associated with them. The

goal of scheduling PSDL tasks is to create a schedule as soon as

possible, meeting both the precedence constraints and timing
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constraints. We describe the timing properties of PSDL operators. We

consider schedulers for PSDL programs containing only periodic

operators. We define a task to be the instance of operator occurred in

a particular period. A constraint graph of PSDL operators is obtained

by building a harmonic block, evaluating the number of tasks in the

graph, generating the chains of tasks, and interconnecting these

chains.

Known optimal algorithms for non-preemptive multiprocessor

scheduling are very time consuming. We propose two fast greedy

methods based on different heuristic cost functions.

Given a constraint graph, we propose an Earliest Task

Deadline/Latest Processor Ending Time First algorithm called

Algorithm A. The reason to assign earliest deadline task with highest

priority is to ensure that task can meet its deadline as well as

possible. This is a fast heuristic algorithm that does not guarantee a

feasible solution.

We also propose an Earliest Task Start Time/Most Available

Processor First algorithm called Algorithm B. The key idea in this

algorithm is that tasks are first-ready, first-served.

We create two methods to search for the optimal solution. The

first method traverses each possible solution and finds the best one.

The second method uses a lower bound cost estimate to limit the

search, following the branch and bound approach. This method is

much better than the first one because it can save time and space

due to unnecessary graph expanding.
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B. FURTHER RESEARCH

This is the first work on scheduling PSDL operators on

multiprocessor systems. Further research is required for

implementation and identification of possible weaknesses. Because

the tasks are statically scheduled, it is difficult to identify all possible

software design contingencies without an executable version of the

scheduler. The author recommends continued work in the following

areas:

Implementation of the Static Scheduler,

Implementation of the Execution Support s' tem Interfaces,

Modifying proposed algorithms using better heuristics,

Proving the algorithms by mathematics, and

Changing the assumptions of scheduling problem.

1. Implementation of the Static Scheduler

The programming language used in implementation will be

Ada. The guides for accomplishing the implementation are contained

in [Ref. 19] and [Ref. 33].

2. Implementation of the Execution Support System

Interfaces

Section C of Chapter one briefly introduces the relationship

between the three components of the Execution Support System. In

Figure 6, the static scheduler interfaces with the dynamic scheduler.

Since the algorithms for both schedulers were designed

independently, there may need to be some modifications made to

ensure proper execution. The static scheduler passes a separate text
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file to the dynamic scheduler containing information about the non-

time critical operators in a prototype. There should be an interface

between these two schedulers, which indicates the format for

communication between both schedulers. This is an implementation

problem rather than a design problem. More detail can be found in

[Ref. 35: pp. 49-50].

3. Modifying Proposed Algorithms Using Better

Heuristics

Any heuristic method suffers from several shortcomings such

as the difficulty in assuring its solution accuracies [Ref. 21]. If one

algorithm can be proven to be better than the other which had been

proven to be optimal, then we can also say that this algorithm is also

optimal. The rule of thumb can be applied to all scientific inventions,

including scheduling problems. The more basic understanding of the

problems we have, the more opportunities we can invent a heuristic

solution.

4. Proving the Algorithms by Mathematics

We can also build a mathematical model for the proof of

algorithm. Although some heuristic algorithms seem to be very

straightforward, it is sometimes hard to completely prove that they

work correctly.

5. Changing the Assumptions of Scheduling Problem

Different assumptions can lead to different results. For

instance, tasks are assumed to be non-preemptive in this thesis, but

they could be preemptive. There are still many open problems to be
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discussed, such as periodic or non-periodic, any constraints or not,

whether the constraints graph is a tree or network, scheduling tasks

on multiprocessor systems or on distributed systems, etc.

C. CONCLUSIONS

The goal of this thesis is to design the algorithms to schedule

tasks in multiprocessor systems. There are two kind of algorithms

created. One of them is under the assumption that tasks have no

timing constraints on them, and the other have.

One important aspect of the multiprocessor is its application in

real-time systems. Computer architecture had made rapid progress

in the manufacture of chips. This makes processors cheaper than

before. Progress is now limited by software problems. Scheduling

problems are among these software problems. They must be solved

to arrange tasks so that we can utilize multiprocessors to the

maximum.
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